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If scaling variables and scaling expressions are chosen judiciously, “critical” scaling analyses do not need to
be restricted to a narrow range of temperatures near the critical point. The standard scaling variable �T
−Tc� /Tc is inadapted to wide ranges of temperature because it diverges at high temperatures. With the variable
�= �T−Tc� /T, in the high-dimension �mean-field� limit, the reduced susceptibility and the second-moment
correlation length of the Ising ferromagnet depend on temperature as ��T�=�−1 and ��T�=T−1/2�−1/2 exactly
over the entire temperature range above the critical temperature Tc. For the canonical two-dimensional square
lattice near-neighbor Ising ferromagnet, it is shown that compact “extended scaling” expressions analogous to
the high-dimensional limit form but with the appropriate exponents give accurate approximations to the true
temperature dependencies, again over the entire temperature range from Tc to infinity. Within this approach, for
near-neighbor interaction systems, there is no crossover temperature above which mean-field-like behavior sets
in.

DOI: 10.1103/PhysRevB.78.024435 PACS number�s�: 75.50.Lk, 05.50.�q, 75.40.Mg

I. INTRODUCTION

The remarkable critical behavior at second-order phase
transitions has been intensively studied for many years. In
the limit where the temperature T tends to the critical tem-
perature Tc, observables Q�T� diverge as

Q�T� � �T − Tc�−q, �1�

where q is the critical exponent. The common approach1 is to
use t= �T−Tc� /Tc as the scaling variable. There are both ana-
lytic and nonanalytic corrections to the strict critical limiting
form as soon as T is not infinitesimally close to Tc, leading to
the Wegner2 expansion, which can be written with t as the
scaling variable as

Q�t� = Cqt−q�1 + a1t� + . . . + b1t + b2t2 + . . .� , �2�

where Cq is the critical amplitude, � is a universal nonana-
lytic correction exponent, an are the nonuniversal correction
amplitudes, and bn are the nonuniversal analytic correction
amplitudes.

It is widely considered that there is only a narrow tem-
perature range, the critical region, in the immediate vicinity
of Tc, where these equations are valid and that there is a
crossover toward mean-field-like behavior outside this re-
gion. Thus the standard protocol for estimating critical expo-
nents from experimental or numerical data is to carry out
analyses using Eq. �1� with the scaling variable t, together
with finite size scaling �FSS� rules derived using these equa-
tions, over as narrow a range of temperature as possible
around the critical point, introducing phenomenological
nonanalytic corrections to scaling if the data require them. In
fact it is legitimate a priori to choose any temperature-
dependent normalization for the scaling variable for the
analysis close to Tc as long as the normalization factor does
not have critical behavior; the choice of scaling variable is
however crucial if data are to be analyzed over a wide tem-
perature range. Our aim is to demonstrate that if scaling vari-
ables and scaling expressions are chosen judiciously, an ap-

proximate but good quality “critical” analysis can be
extended to the entire range of temperature above the critical
point.

It is important to be explicit as to the definitions of the
observables; to be specific we will use throughout a termi-
nology corresponding to near-neighbor interaction spin-1/2
Ising ferromagnets with finite-ordering temperatures on hy-
percubic lattices. The arguments can be generalized to other
systems, mutatis mutandis. With spins S�x� at sites x and �
=1 /T, we will follow the standard convention3–5 and discuss
the reduced susceptibility

���� = �th���/� = �
x

�S�0�S�x�	 , �3�

where �th��� is the thermodynamic susceptibility
���M���� /��H��, the direct output of an experimental mea-
surement of the magnetization M��� in a limitingly small
magnetic field H. �Confusingly ���� is often referred to as
“the susceptibility” in numerical studies�.

The other observable that we will discuss is the second-
moment correlation length �sm���, which is not identical to
the “true” correlation length3 �true���. The second moment of
the correlation function is defined as

�2��� = �
x

x2�S�0�S�x�	 �4�

and the second-moment correlation length is �sm���
= ��2��� /z�����1/2, where z is the number of neighbors. We
will refer to �sm��� as ����. This correlation length is the
infinite size limit of the size-dependent correlation length
calculated in numerical simulations following Ref. 6.

Long high-temperature series expansions �HTSE� have
been calculated for both ���� and �2���.5 These are Taylor
expansions in � where each individual term is strictly exact.
Whatever the dimension the series begin by ����=1+. . . and
�2���=z�+. . ., giving the strict high-temperature limits
����→1 and ����→�1/2. Based on this simple observation
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an “extended scaling” formulation was introduced,7,8 in
which the scaling variable is �= �1−� /�c�= �T−Tc� /T;9 to
leading order the reduced susceptibility is written ����
��−� and the second-moment correlation length is written as
���� /�1/2��−	. t is not a good variable in this context sim-
ply because it diverges in the high-temperature limit. The
Wegner expansion for the reduced susceptibility was origi-
nally written with � as the scaling variable,2,5 so

���� = C��−��1 + a�,1�� + . . . + b�,1� + b�,2�2 + . . .� �5�

with the same exponents as in Eq. �2� but different ampli-
tudes an ,bn. For the correlation length we can write

���� = C���/�c�1/2�−	�1 + a�,1�� + . . . + b�,1� + b�,2�2 + . . .� .

�6�

With this approach the leading critical term remains a good
approximation over a wide temperature range with analytic
correction terms, and nonanalytic terms when the factors a
are nonzero; the analytic correction terms are however con-
siderably weaker than when t is chosen as the scaling vari-
able.

We will discuss two extreme canonical systems: the high-
dimensional near-neighbor Ising ferromagnet on a hypercu-
bic lattice and the two-dimensional �2D� Ising ferromagnet
on a square lattice. For these two systems there are essen-
tially no nonanalytic correction terms. In the high-
dimensional �mean-field� case the critical behavior param-
eterized using the extended scaling protocol is strictly exact,
with temperature-independent effective critical exponents
over the entire temperature range from Tc to infinity. In the
square lattice the protocol leads to compact high-quality ap-
proximations over the whole range, which can be made very
accurate with minimal correction terms. In the temperature
range close to Tc the expression for ��T� can be linked to
renormalization group theory �RGT� analytic corrections.

In the general case, when the extended scaling protocol is
used, experimental or simulation data can be usefully ana-
lyzed over a wide temperature range in terms of the critical
behavior rather than only in the very close neighborhood of
Tc. It should be underlined that outside the strict critical- and
high-temperature limits, the protocol is approximate; in par-
ticular nonanalytic terms are not included explicitly. The in-
fluence of these terms on the extended scaling analysis has
been studied in the canonical three-dimensional �3D�
systems.8

II. HIGH-DIMENSION ISING MODEL

It is instructive to first consider the high-dimension �or
mean-field� limit of the HTSE for the spin-1/2 Ising near-
neighbor ferromagnet on �hyper�cubic lattices. Let us denote
by z the number of neighbors �z=2d for hypercubes in di-
mension d�. In order to discuss this limit it is convenient to
scale the interaction strength by the factor z−1. Then the
HTSE for the reduced susceptibility10 ���� and for the sec-
ond moment of the correlation function �2��� are given ex-
actly by infinite series of terms in powers of tanh�� /z� with
�=1 /T:

���� = 1 + �z�tanh��/z� + �z2 − z�tanh��/z�2

+ �z3 − 2z2 + z�tanh��/z�3 + . . . �7�

and

�2��� = �z�tanh��/z� + �2z2�tanh��/z�2

+ �3z3 − 2z2 + z�tanh��/z�3 + . . . . �8�

The second-moment correlation length is defined by

���� = ��2���/z�����1/2. �9�

For high dimensions z→
 the �z tanh�� /z��n contribution
will dominate at each n. Hence

���� = 1 + z tanh��/z� + �z tanh��/z��2 + �z tanh��/z��3 + ¯

= �1 − z tanh��/z��−1 = �1 − ��−1 �10�

so �c=1.
Similarly in the high-dimension limit

�2��� = z��������2 = z tanh��/z��1 + 2z tanh��/z�

+ 3„z tanh��/z�…2 + 4„z tanh��/z�…3 + . . .�

= z tanh��/z�„1 − z tanh��/z�…−2 = ��1 − ��−2,

�11�

i.e.,

���� = �1 − �/�c�−1 = ��T − Tc�/T�−1 �12�

and

����/�1/2 = �1 − �/�c�−1/2 = ��T − Tc�/T�−1/2 �13�

exactly for all � less than �c=1, i.e., all T greater than Tc
=1.

Thus using as the critical variable �= �1−� /�c� instead of
t and introducing the prefactor �� /z�−1/2 in the expression for
����, the critical regime as defined by the scaling expressions

���� = �−� �14�

and

����/�1/2 = �−	 �15�

extends rigorously from Tc to infinite T, with temperature-
independent mean-field exponents �=1 and 	=1 /2.

This statement can be reformulated: in the “ideal” high-
dimension �mean-field� limit, one can expect correction
terms to be inexistent if the critical variable and observables
are chosen correctly. The two observables which we have
discussed, the reduced susceptibility ���� �i.e., �th��� /��
and the “reduced” second-moment correlation length
���� / �� /z�1/2, show exact critical power-law behaviors �as
�−� and as �−	, respectively� for all T�Tc. We can surmise
that in finite dimensions, where the critical exponents are
different, there will be correction terms but that the same
critical variable and normalized observables will remain the
most appropriate for expressing the critical behavior over a
wide temperature range.
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III. SQUARE LATTICE ISING MODEL

In finite dimensions the extreme simplicity of the mean-
field case will be lost, but because of the generic structure of
the HTSE shown above, the general form of Eqs. �3� and
�15� �including the noncritical normalization �1/2 in
���� /�1/2� can be expected to be rather robust.7 The exact
finite dimension leading critical behaviors for �hyper�cubic
ferromagnets when �→�c can be written as

���� → C��−� �16�

and

���� → �C�/�c
1/2��1/2�−	 �17�

with critical amplitudes C�, C� /�c
1/2. Extended scaling ex-

pressions can be written analogous to the infinite dimension
form, linking the critical limit with the trivial high-
temperature fixed point limit.7,8 As a first step a minimal
modification must be made in order to allow for the fact that
in finite dimensions, C� and C� /�c

1/2 are not exactly equal to
one. We write the extended scaling expressions ����� and
����� as

����� = C��−��1 + ��1 − C��/C�� �18�

and

����� = �1/2��C�/�c
1/2��−	��1 + ���c

1/2 − C��/C�� , �19�

These expressions, which depend only on the critical pa-
rameters �c, �, 	, C�, and C�, are exact by construction in
both the critical- and the high-temperature limits, and they
provide compact approximate expressions for the behavior
over the whole range in between. It has been demonstrated
that for the standard three dimensional Ising, XY, and
Heisenberg ferromagnets,7,8 extended scaling expressions
�defined entirely through the critical parameters appropriate
for each particular case� agree with the true ��T� and ��T� to
within better than about 2% over the entire range of tempera-
ture from Tc to infinity. Weak nonanalytic correction terms
can be clearly seen.8

Here we will consider in more detail the particular case of
the canonical two-dimension square lattice Ising ferromag-
net, for which the critical temperature, the critical exponents,
the temperature dependence of the “true” correlation length,
and a number of other properties are known exactly from the
original work by Onsager and others1 and from more recent
conformal field theory.11 In the 2D Ising lattice there are no
nonanalytic terms4,12 �except for weak high-order terms due
to the lattice breaking of rotational symmetry,13 which can be
ignored for present purposes�. There are no known exact
analytic expressions for the susceptibility or the second-
moment correlation length, but many terms of the high-
temperature series expansions have been calculated,4,14–17 so
���� and ���� can be calculated to high precision over the
entire range of �, from �c to zero �i.e., from Tc to infinity�.
We have taken advantage of the exact knowledge of the criti-
cal temperature tanh��c�=
2−1 �i.e., �c=0.440686794¯�
and of the critical exponents �=7 /4 and 	=1 to form biased
Padé approximants �p and �p

2 of � and �2, using up to 48
HTSE coefficients. Using first-order inhomogeneous differ-

ential approximants, we would obtain an equivalent accu-
racy. Thus C�=0.962581. . ., and C� /�c

1/2=0.854221175.
�The ratio of the exact “true” correlation length critical am-
plitude to the second-moment correlation length critical am-
plitude is 1.000 402 18�. The extended scaling estimates
����� and ����� �Eqs. �18� and �19�� can be written down
directly using these values.

Fisher and Burford3 some 40 years ago introduced a non-
critical prefactor in the expression for ���� in Ising ferro-
magnets; they already noted that in the mean-field limit, the
prefactor would be equal to �1/2 as confirmed by the high-
dimension limit discussion above. For Ising ferromagnets in
2D and 3D, they introduced an “effective range of direct
interaction” parameter r1�T�, which they defined through

�r1�T�/��T��2−� = 1/��T� . �20�

The temperature variation of r1�T� is mainly due to the non-
critical prefactor in the expression for the second-moment
correlation length ��T�. Fisher and Burford did not give an
explicit expression for r1�T� in finite dimensions, but they
calculated it numerically over a wide range of temperature
from the HTSE terms known at the time for five different
Ising ferromagnets in 2D and 3D �their Fig. 6�. We can re-
calculate the Fisher-Burford square lattice r1�T� as defined
above from the high-precision square lattice Padé approxi-
mants values and also from the extended scaling expressions.
In Fig. 1 we compare over a very wide temperature range

r1��� = �p���/��p����1/�2−�� �21�

obtained directly from the high precision values �p��� ,�p���
with r1

���� estimated from the ����� ,����� of the extended
scaling expressions. On the scale of this plot the two sets of
points are almost indistinguishable, validating the assump-
tion that the extended scaling expressions are accurate ap-
proximations to the exact behavior of the observables.

FIG. 1. �Color online� The Fisher-Burford “effective range of
direct interaction” parameter r1�T� calculated from the high-
precision square lattice Padé approximants values �squares, black
online� and from the extended scaling expressions �circles, red on-
line�, as functions of �=1−� /�c.
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As a more stringent test of the extended scaling, in Figs. 2
and 3 we present the ratios ����� /�p��� and ����� /�p���,
where again �����, ����� are the extended scaling estimates
from Eqs. �19� and �18�, and �p���, �p��� are the high preci-
sion calculated Padé values. It can be seen already that with-
out further correction factors, the extended scaling values
represent the high precision data for ���� and for ���� to
better than 1% over the entire temperature range from �=0 to
�=1. The figures also include ����� /�p��� and ����� /�p���
ratios where the expressions for ����� and ����� include sec-
ond correction terms from Eqs. �28� and �29�, as will be
discussed later.

An alternative manner in which to present the data is to
express temperature dependencies of ���� and ���� in terms

of temperature-dependent “effective” critical exponents.5,19,20

In the spirit of the previous discussion, quite generally for
any ferromagnet the temperature-dependent effective expo-
nents can be rigorously defined as

�eff��� = − d log������/d log��� , �22�

	eff��� = − d log�����/�1/2�/d log��� , �23�

and

�eff��� = 2 − d log������/d log�����/�1/2� . �24�

The definition of �eff��� is the same as in references,5,19 but
because of the prefactor �1/2 normalizing ���� the other two
definitions are not standard. This prefactor is essential to
ensure sensible high-temperature limits in Eqs. �23� and �24�.
We can note that for the first two parameters, an explicit
choice must be made for �c, while �eff��� �obviously linked
to the two others� can be calculated from ���� and ���� data
sets without any a priori knowledge of or estimate for �c as
Eq. �24� does not involve �. The effective exponents tend to
the critical exponent values at �c. There are simple exact
results for the high-temperature limits. Thus the leading
terms in the HTSE for the reduced susceptibility are ����
=1+2d�+¯, so in the high-temperature limit

�eff�� → 1� = − d log������/d log���

= − d log�1 + 2d� + ¯�/d log�1 − �/�c�

= 2d�c. �25�

Similarly 	eff��→1�=d�c and �eff��→1�=0 in all dimen-
sions for hypercubic lattices. In the square lattice case
�eff�1�=1.7627¯ and 	eff�1�=0.8814¯.

Figures 4–6 show �eff���, 	eff���, and �eff���, comparing

FIG. 2. �Color online� The ratio ����� /�p��� where the ����� are
the extended scaling estimates of the correlation length �circles, red
online: one correction term; triangles, blue online: two correction
terms� and �p��� the high precision data, as a function of �=1
−� /�c.

FIG. 3. �Color online� The ratio ����� /�p��� where the ����� are
the extended scaling estimates of the reduced susceptibility �circles,
red online: one correction term; triangles, blue online: two correc-
tion terms� and �p��� the high precision data, as a function of �
=1−� /�c.

FIG. 4. �Color online� The effective exponent �eff calculated
from the high precision �p��� data �squares, black online� and from
the extended scaling estimates �circles, red online: one correction
term; triangles, blue online: two correction terms�, as functions of
�=1−� /�c.
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the high precision values from HTSE with the extended scal-
ing values, again with either one or two correction terms.

A number of remarks can be made. First, looking only at
the high precision data it can be seen that the effective ex-
ponents defined through Eqs. �22�–�24� change smoothly and
gradually with temperature over the whole range of tempera-
ture from the critical temperature to infinity. For the square
lattice �eff��� changes little with temperature while 	eff���
varies rather more. In the 2D case �eff��� must necessarily
change quite strongly, from the critical value 0.25 to the
infinite temperature value of 0. In 3D the absolute value of
the change is much weaker.

Second, presenting the data in this way is a very sensitive
test of the extended scaling expressions; it can be seen that

with one correction term agreement with the high precision
data is to within better than about 5% for each of the effec-
tive exponents over the entire temperature range. With two
correction terms the agreement is considerably improved,
particularly for 	eff. From the general argument given above,
in other ferromagnets one should expect qualitatively similar
behavior, but with complications due to weak irrelevant op-
erator terms in addition to the analytic correction terms.

It is widely considered that there is a “crossover” to
mean-field-like effective exponents ��=1,	=1 /2� outside a
critical region in the neighborhood of �c �see, e.g., Ref. 21�.
As we have noted above, the exact high-temperature limits
are ����=1+. . . and �2���=z�+. . . for all dimensions. Sup-
pose t is chosen as scaling variable and the effective expo-
nents defined through �eff�t�=−d log���t�� /d log�t� and
	eff�t�=−d log���t�� /d log�t�. Then the high-temperature lim-
its will always be �eff�t=
�=0 and 	eff�t=
�=1 /2. This is
simply an automatic consequence of the choice of t as scal-
ing variable. �Only if �eff is defined using the thermodynamic
susceptibility �th�t�, i.e., �eff�t�=−d log��th�t�� /d log�t� will
the high-temperature limit be �eff�t=
�=1 as in Ref. 21�.
With the present definitions of the temperature-dependent ef-
fective exponents in terms of � �Eqs. �22� and �23��, there is
clearly no such crossover in near-neighbor interaction ferro-
magnets; �eff and 	eff only vary weakly with temperature and
tend to be system-dependent values which are not mean-
field-like.

IV. ANALYTIC CORRECTIONS

The general formalism for corrections to scaling �both
analytic and nonanalytic� within the renormalization group
theory �RGT� is well established �see Refs. 13 and 22�. In the
square lattice Ising model for present purposes, it can be
considered that there are no nonanalytic corrections.12,13 This
means that one can write for instance the ratio of the inverse
of the exact “true” correlation length 1 /�true���
= �ln�coth����−2�� to the ideal pure critical power law value
� /C�

t as an analytic correction factor g���, which is a smooth
function having an asymptotic Taylor expansion form, i.e.,

C�
t /�true��� = �g��� = ��1 + a1� + a2�2 + a3�3 + . . .� . �26�

The angular dependence of the exact leading coefficients of
this “large distance two-point correlation length” analytic
correction series has been calculated.13,22,23 If g��� is trun-
cated at low order, it only gives a useful representation of
�true��� very close to Tc.

For � �it is important to keep in mind that this second-
moment correlation length is not the “true” correlation
length�, we choose to define a correction factor g���� in the
extended scaling form:

C�/���� = �1 − ��−1/2�	g���� �27�

as �� /�c�1/2= �1−��1/2. Empirical fits can be made to the
high-precision �p��� square lattice data. We assume a Taylor
series for g����, keeping only two terms �up to order �2� with
the restriction that g��1�=C�. We find that

FIG. 5. �Color online� The effective exponent 	eff calculated
from the high precision �p��� data �squares, black online� and from
the extended scaling estimates �circles, red online: one correction
term; triangles, blue online: two correction terms�, as functions of
�=1−� /�c.

FIG. 6. �Color online� The effective exponent �eff calculated
from the high precision �p��� and �p��� data �squares, black online�
and from the extended scaling estimates �circles, red online: one
correction term; triangles, blue online: two correction terms�, as
functions of �=1−� /�c.
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g���� = 1 − 0.19055� + 0.04476�2 �28�

provides a fit accurate to within less than 0.02% over the
entire temperature range from �=0 to 1, thus including both
the “critical region” and the high-temperature region. If the
standard g��� correction factor had been used, the coefficient
for the term in � would have become 0.5−0.19055
=0.30945. This value is very close to the value of the equiva-
lent coefficient in the g��� series for the “true” correlation
length, which is 0.3116¯.22

The large coefficient of the � term in g���� can be under-
stood as correcting for the difference between C� /�c

1/2

=0.854221 and 1. The small second coefficient corresponds
to a further adjustment, which leads to a very significant
improvement in the fit. It is remarkable that excellent preci-
sion over the entire temperature range is obtained with only
two correction terms, validating the use of the g���� param-
etrization rather than the g��� form for �sm���. We can note
that when g���� is used rather than g���, there are no correc-
tion terms to �sm��� in the mean-field limit.

The square lattice correction terms for ���� have been
carefully studied.4,16,17 The coefficients for a large number of
leading correction terms are known, of which two are exact,
with additional terms over and above Taylor series terms. An
empirical correction factor for ���� with two correction
terms gives

���� = C��−7/4�1 + 0.0779� − 0.03903�2� . �29�

The leading term in Eq. �29� has a coefficient essentially
identical to the exact value �0.0779032¯ �Refs. 4, 16, and
17��, and the phenomenological inclusion of a single further
term provides an overall fit up to infinite temperature which
is accurate to better than 0.1%.

V. FINITE SIZE SCALING

An immediate practical consequence that follows from
the discussion above concerns the extraction of critical pa-
rameters from numerical studies of systems other than these
canonical ferromagnets. If numerical data have been ob-
tained over a wide temperature range and not only in the
region very close to Tc, direct plots of the effective expo-
nents as defined through Eqs. �22�–�24� for the largest
sample sizes available can be extrapolated to estimate critical
exponents. The temperature dependence of the curves, in-
cluding the temperature range well above Tc, can then give
useful indications concerning critical exponents and correc-
tions. Finite size scaling analyses should be made using ap-
propriate expressions derived from the leading extended
scaling form. The widely used finite size scaling relation

Q�L,T� � F�L1/	�T − Tc�� �30�

is derived from the Fisher finite size scaling ansatz Q�L ,T�
=F�L /��T�� on the assumption that the correlation length
behaves as ��T�� t−	; as we have seen the latter is always a
poor approximation for ��T� except extremely close to Tc.
Using the Fisher ansatz, together with the extended scaling
rule, �������1/2�−	 leads to finite size scaling
expressions,7,8 which remain much better approximations

over a considerably wider temperature range. If Tc is known
to reasonable precision, such finite size scaling analyses from
numerical data taken over a wide temperature range should
give reliable and unbiased estimates for the critical expo-
nents. Ideally an allowance for the correction factor g���� of
the preceding section should also be included in the analysis,
but this would require very high quality numerical data.

It is important that for each particular system the appro-
priate extended scaling form should be used. For instance, in
spin glasses with symmetrical interaction distributions, the
relevant scaling variable is7,24 �SG=1− �� /�c�2.

VI. CONCLUSION

One should expect “ideal” critical behavior in the high-
dimension �mean-field� limit ferromagnet, meaning that if
the scaling variable and the normalizations of the observ-
ables are chosen appropriately, all observables should show
pure critical power law behavior over the entire temperature
range above Tc. In the high-dimension limit both the reduced
susceptibility ���� and the “reduced” second-moment corre-
lation length ���� /�1/2 indeed show pure critical power law
behaviors �as �−� and as �−	, respectively, with temperature-
independent mean-field exponents� for all T�Tc, validating
the use of the scaling variable �= �1−� /�c� and the normal-
ization for ���� through the �1/2 noncritical prefactor. In
other words, in terms of this scaling variable and these ob-
servables behavior is “always critical” for the mean-field sys-
tem over the whole temperature range.

For systems in finite dimensions one can no longer expect
ideal behavior, and there will always be deviations from the
pure critical power laws as soon as T−Tc is finite; these
deviations can be expressed in terms of correction factors.
The use of the standard scaling variable t= �T−Tc� /Tc is
poorly adapted to the analysis of data over a wide tempera-
ture range because this variable diverges at high tempera-
tures. In order to reduce the importance of the necessary
corrections �and to have sensible high temperature limits�, it
is judicious to base the choice of scaling variable and scaling
expressions on those appropriate for the mean-field limit. In
agreement with arguments from the general form of the HT
series expansions, this leads to extended scaling expressions
with a single adjustment term which are �����=C��1
−� /�c�−��1+��1−C�� /C�� for the reduced susceptibility and
�����=�1/2�C��1−� /�c�−	��1+��1−C�� /C�� for the second-
moment correlation length. The adjustment terms have been
introduced in order that the expressions tend to their known
exact high-temperature limits.

For the canonical square lattice Ising ferromagnet with its
known critical temperature, exponents, and critical ampli-
tudes C� and C�, the expressions ����� and ����� are com-
pact approximations to the exact behavior, which are accu-
rate to within about 1% over the entire temperature range.
Further correction terms can be included to represent analytic
scaling corrections �there are essentially no nonanalytic cor-
rections in this system�. If the correction series is truncated
after only one more term �so that it takes the form �1+a1�
+a2�2�, Eqs. �29� and �28�� the precision improves to better

I. A. CAMPBELL AND P. BUTERA PHYSICAL REVIEW B 78, 024435 �2008�

024435-6



than 0.1% for ���� and better than 0.02% for ���� over the
entire temperature range. The temperature dependence of the
observables can be expressed in terms of strictly defined ef-
fective exponents, �eff���, 	eff���, and �eff���, Eqs. �22�–�24�,
which vary smoothly and weakly with temperature and do
not tend to mean-field values at high temperature. In the
square lattice system the leading correction terms for �����
can be compared to the critical analytic correction terms for
the “true” correlation length, for which the exact leading

terms in the Taylor expansion have been discussed in detail
in the RGT formalism.13,22

The present conclusions confirm those already given for
general cases of ferromagnets and spin glasses.7,8 For prac-
tical purposes the extended scaling protocol can be usefully
applied to the analysis of experimental results or when ex-
tracting critical parameters from finite size scaling analyses
on numerical simulation data. In the general case allowance
should be made for nonanalytical correction terms.
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